A Cost-Efficient and Reliable Resource Allocation Model Based on Cellular Automaton Entropy for Cloud Project Scheduling
نویسندگان
چکیده
Resource allocation optimization is a typical cloud project scheduling problem: a problem that limits a cloud system’s ability to execute and deliver a project as originally planned. The entropy, as a measure of the degree of disorder in a system, is an indicator of a system’s tendency to progress out of order and into a chaotic condition, and it can thus serve to measure a cloud system’s reliability for project scheduling. In this paper, cellular automaton is used for modeling the complex cloud project scheduling system. Additionally, a method is presented to analysis the reliability of cloud scheduling system by measuring the average resource entropy (ARE). Furthermore, a new cost-efficient and reliable resource allocation (CERRA) model is proposed based on cellular automaton entropy to aid decision maker for planning projects on the cloud. At last, the proposed model is designed using Matlab toolbox and simulated with three basic cloud scheduling algorithm, First Come First Served Algorithm (FCFS), Min-Min Algorithm and Max-Min Algorithm. The simulation results show that the proposed model can lead to achieve a cost-efficient and reliable resource allocation strategy for running projects on the cloud environment. Keywords—Resource Allocation; Cloud Project Scheduling; Entropy; Cellular Automaton; Cost-efficiency; Reliability; Complex System; Local Activity; Global Order; Disorder
منابع مشابه
Integrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملA Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm
In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...
متن کاملA Model based on Cloud Computing for the implementation and management IT services in Banks
In recent years, the banking industry has made significant changes in technology and communications. The expansion of electronic communications and a large number of people around the world access to the Internet, appropriate to establish trade and economic exchanges provided but high costs, lack of flexibility and agility in existing systems because of the large volume of information, confiden...
متن کاملA Model based on Cloud Computing for the implementation and management IT services in Banks
In recent years, the banking industry has made significant changes in technology and communications. The expansion of electronic communications and a large number of people around the world access to the Internet, appropriate to establish trade and economic exchanges provided but high costs, lack of flexibility and agility in existing systems because of the large volume of information, confiden...
متن کاملEfficient Resource Allocation and Scheduling in Cloud Computing Environment
The cloud architecture is usually composed of several XaaS layers—including Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). The previous work studies efficient resource allocation to optimize objectives of cloud users, IaaS provider and SaaS provider in cloud computing. This work proposes the composition of different layers in the cloud, such a...
متن کامل